Cosmology in the Era of Large Surveys

Ryan Scranton

Google

13 March 2007
A Long, Long Time Ago...
The State of Cosmology in 1996

- COBE measurements had shown that the Cosmic Microwave Background was constant to one part in 10^5 at recombination. COBE DMR had measured CMB anisotropy correlations on very large scales. Ground and balloon based experiments were pushing to $\sim 1^\circ$ scales.

- Measurements of galaxy clustering in the local universe were largely limited to photometric data. Spectroscopic surveys were mostly focused on measuring bulk velocity flows.

- Big Bang Nucleosynthesis measurements had put strong constraints on the baryon density ($\Omega_b h^2$) but not much else.

- Fundamental questions about the size and shape of the Universe were still very much open.
1996 Great Age Debate

Two camps on the value of Hubble’s Constant:

- Cepheid variable stars in nearby galaxies gave $H_0 \sim 80$ km/s/Mpc.
- Measurements using nearby supernovae as standard candles yield $H_0 \sim 55$ km/s/Mpc.
- In both cases error bars are small ($\sim 5 - 10$).

Sidney van den Bergh: $H_0 = 81 \pm 8$!!!
Lurking in the background, the Age Crisis:

- For an Einstein-deSitter universe ($\Omega_M = 1$), the age of the universe is $t_0 = 2/3 \, H_0^{-1}$
- Measurements of stellar ages in globular clusters put $t_0 > 11.5 \text{ Gyr}$ (as high as $t_0 > 17 \text{ Gyr}$ in some estimates)
- Either $\Omega_M < 1$ or $H_0 < 50 \text{ km/s/Mpc}$

Gustav Tammann:

$H_0 = 55 \pm 10$!!!
1996 Great Age Debate

Lurking in the background, the Age Crisis:

- For an Einstein-deSitter universe ($\Omega_M = 1$), the age of the universe is $t_0 = 2/3 \ H_0^{-1}$

- Measurements of stellar ages in globular clusters put $t_0 > 11.5$ Gyr (as high as $t_0 > 17$ Gyr in some estimates)

- Either $\Omega_M < 1$ or $H_0 < 50$ km/s/Mpc or cosmology is broken.

Gustav Tammann: $H_0 = 55 \pm 10$!!!
The Shape of the Universe

- Peebles 1995 summary on the state of Ω_M

<table>
<thead>
<tr>
<th>Observation</th>
<th>$\Omega_M = 1$</th>
<th>$\Omega_M \sim 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics & biasing on scales ≤ 3 Mpc</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Dynamics on scales ≥ 10 Mpc</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Expansion time $H_0 t_0$</td>
<td>???</td>
<td>YES</td>
</tr>
<tr>
<td>Radial and angular size distances</td>
<td>NO (?)</td>
<td>YES (?)</td>
</tr>
<tr>
<td>Plasma mass fraction in clusters</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Models for structure formation</td>
<td>YES (?)</td>
<td>YES (?)</td>
</tr>
</tbody>
</table>

- Theoretical bias toward $\Omega_M = 1$, given COBE & inflation

- Strong gravitational lensing: $\Omega_\Lambda < 0.65$ at 95% confidence for flat universes (Kochanek 1996)
Ten Years Later...

Two Major Improvements

• Better Data
 ★ More Supernovae
 ★ Finer CMB Anisotropies
 ★ Bigger Galaxy Surveys

• Better Analysis
 ★ Fisher Matrix
 ★ Markov Chain Monte Carlo
 ★ Machine Learning & Data Mining

Permutter et al. (1998)
Ten Years Later...

Two Major Improvements

- **Better Data**
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- **Better Analysis**
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining

Hu (2000)
Ten Years Later...

Two Major Improvements

- **Better Data**
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- **Better Analysis**
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining
Ten Years Later...

Two Major Improvements

- **Better Data**
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- **Better Analysis**
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining

Vogeley (1997)
Ten Years Later...

Two Major Improvements

- Better Data
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- Better Analysis
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining

Tegmark et al. (2003)
Ten Years Later...

Two Major Improvements

- **Better Data**
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- **Better Analysis**
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining
Ten Years Later...

Two Major Improvements

- **Better Data**
 - More Supernovae
 - Finer CMB Anisotropies
 - Bigger Galaxy Surveys

- **Better Analysis**
 - Fisher Matrix
 - Markov Chain Monte Carlo
 - Machine Learning & Data Mining

Tegmark et al. (2006)
Current Picture of Reality

- Very good evidence that the universe is flat ($\Omega = 1$), but that $\Omega_M \sim 0.3$, $\Omega_\Lambda \sim 0.7$.

- Doing astronomy with millions of objects (instead of dozens) gives us power to investigate dark matter and dark energy in ways that were previously impossible.

- Examples of Precision Cosmology: Cosmic Magnification & Integrated Sachs-Wolfe Effect
Tracking Dark Matter:

Cosmic Magnification with Galaxies and Quasars
Two Effects of Gravitational Lensing

Wittman (2000)

Light from distant sources is magnified and distorted by dark matter
Two Effects of Gravitational Lensing

Magnification (μ) increases flux (amplification); decreases density (dilution)
Quantifying Cosmic Magnification

- If we are in the weak lensing regime ($\mu \approx 1$),

$$w_{GQ}(\theta) = 12\pi^2\Omega_M (\alpha(m) - 1) \int d\chi dk k \mathcal{K}(k, \theta, \chi) P_{gm}(k, \chi)$$

$$= (\alpha(m) - 1) \times w_0(\theta), \quad (1)$$

where $\alpha(m)$ is the power-law slope of the QSO number counts, \mathcal{K} depends on the foreground and background redshift distributions and $P_{gm}(k)$ is the galaxy-dark matter power spectrum.

- For $\alpha(m) > 1$, increasing amplification outweighs the dilution effect, inducing a positive cross-correlation between foreground and background objects. For $\alpha(m) < 1$, dilution wins and the cross-correlation is negative.

- The lensing magnification is less than 1% per object, so we need to average over many, many QSOs.
Controversy – Is $\Omega_M \approx 1$?

- First lensing motivated measurements in late 1980s and early 1990s
 - Lick, IRAS & APM galaxies, Abell & Zwicky clusters
 - UVX and radio-selected QSOs

- More recently, Guimares, Myers & Shanks (2003) used 2dF QSOs + APM & SDSS galaxy groups

- Consistently detect signal
 $\sim 3 - 10 \times$ the expected lensing

Guimares, Myers, & Shanks (2003)
The Four Horsemen

- **Photometric Calibration**
 - Small amplification effect requires excellent photometry
 - Photographic plates not up to the challenge

- **Uniform Selection**
 - Photographic plates have variable depth of field and numerous defects
 - Spectroscopic surveys require detailed selection function

- **Redshift Overlap**
 - Physical Clustering dominates lensing signal
 - Require either spectroscopy or photometric redshifts for each object

- **Object Density**
 - Poisson errors dominate
 - When object density is low, only systematic signal is detected.
Photometric QSO Selection

- Traditional QSO selection involves cuts in 2-D color projections

- Kernel Density Estimation (KDE) using full 4-D color space
 - 2 training sets: QSOs & stars
 - compute distance in color space to assign new objects

- SDSS spectroscopic selection 85% efficient for $i' < 19$

- KDE selection $> 95\%$ for $g' < 21 \Rightarrow 10 \times$ density

Richards et al. (2004)
Measurement in g'

- Select 5 magnitude bins in g':
 \[17 < g' < 19,\ 19 < g' < 19.5,\ 19.5 < g' < 20,\ 20 < g' < 20.5,\ 20.5 < g' < 21 \]

- Calculate $\langle \alpha - 1 \rangle$ in each bin:
 \[
 \langle \alpha - 1 \rangle = \frac{\int N(m) (\alpha(m) - 1)}{\int N(m)}
 \]

- Expect to see positive correlation for $g' < 19.5$ and negative correlation for $g' > 20$

Scranton et al. (2005)
Measurement in g'

- Select 5 magnitude bins in g':
 17 < g' < 19, 19 < g' < 19.5, 19.5 < g' < 20, 20 < g' < 20.5, 20.5 < g' < 21

- Calculate $\langle \alpha - 1 \rangle$ in each bin:

$$\langle \alpha - 1 \rangle = \frac{\int N(m) (\alpha(m) - 1)}{\int N(m)} \quad (3)$$

- Expect to see positive correlation for $g' < 19.5$ and negative correlation for $g' > 20$

Scranton et al. (2005)
Optimal Signal

- Magnitude bin measurements track expected signal as $\langle \alpha - 1 \rangle$ varies from bright to faint QSOs

- $\langle \alpha - 1 \rangle \approx 0$ for full QSO sample

- To extract the full statistical significance for lensing measurement, use second moment:
 - Re-calculate estimator weighting each QSO by $\alpha(m) - 1$
 - Expected signal:
 $$w_{GQ,0}(\theta) = \langle (\alpha - 1)^2 \rangle \times w_0(\theta)$$
 \hspace{1cm} (4)

- Instead of canceling, positive and negative correlations add coherently
Optimal g'

- 105,000 QSOs & 13 million galaxies
- 8σ detection of lensing against null signal
- Excellent match to expected signal
- For $z \sim 0.3$, detecting lensing on scales from 60 kpc/h to 10 Mpc/h

Scranton et al. (2005)
Flip the Script

- Correlate QSO flux with galaxy density
- Differences between bands indicates wavelength-dependent extinction
- Reconstruct dust halo profile of average galaxy & environment
- Key systematic consideration for SNe missions

Menard & Scranton et al. (2007)
Flip the Script

- Correlate QSO flux with galaxy density
- Differences between bands indicates wavelength-dependent extinction
- Reconstruct dust halo profile of average galaxy & environment
- Key systematic consideration for SNe missions

Menard & Scranton et al. (2007)
Flip the Script

- Correlate QSO flux with galaxy density
- Differences between bands indicates wavelength-dependent extinction
- Reconstruct dust halo profile of average galaxy & environment
- Key systematic consideration for SNe missions

Menard & Scranton et al. (2007)
Flip the Script

- Correlate QSO flux with galaxy density
- Differences between bands indicates wavelength-dependent extinction
- Reconstruct dust halo profile of average galaxy & environment
- Key systematic consideration for SNe missions

Menard & Scranton et al. (2007)
The Future of Cosmic Magnification

- Using photometric QSOs and galaxies from SDSS DR3, we observe a signal with the expected lensing amplitude. The signal also exhibits the expected variation in amplitude and sign with changing $\alpha(m)$.

- Optimally combining all of our g'-selected QSOs, we detect cosmic magnification of QSOs at $> 8\sigma$. Earlier conflicting Ω_M values are resolved.

- Correlating QSO flux and galaxy density gives us the first ever measurement of galaxy dust halo shapes & will be critical for flux-based observations like future SNe.

- The techniques used for efficient QSO selection are readily applicable to next generation of large, multi-band surveys. Cosmic magnification with galaxies or QSOs is an excellent (free!) complement to planned cosmic shear surveys (same physics & cosmology, different systematics).
Detecting Dark Energy:
Integrated Sachs-Wolfe Effect
Integrated Sachs-Wolfe Effect in 2 Minutes

- After matter-radiation equality, dark matter falls into potential wells set up during inflation.

- For open or ΛCDM universes, universe expands faster than potentials, leading to potential decay.

- CMB photons passing through potentials see net blue-shift in energy \Rightarrow positive correlation with foreground structure.
From WMAP, we know that the overall geometry of the universe is very close to flat ($\Omega = 1$).

Hence, detecting ISW signal is a clear signature of dark energy.

Orthogonal to SNe detection. ISW signal related to growth of structure, while SNe signal is due to expansion history.
The Galaxy Data Set

- Initially began with LRGs from SDSS (Scranton et al., 2003); detection at $\sim 3\sigma$
- Increased sample to include galaxies from 2MASS, FIRST and NVSS
- New galaxy sample contains 15 galaxy maps spanning $0 < z < 2.5$ and wavelengths from radio to IR to optical to near-UV.
The Galaxy Data Set

- Initially began with LRGs from SDSS (Scranton et al., 2003); detection at $\sim 3\sigma$

- Increased sample to include galaxies from 2MASS, FIRST and NVSS

- New galaxy sample contains 15 galaxy maps spanning $0 < z < 2.5$ and wavelengths from radio to IR to optical to near-UV.
Map Comparison
Results

Scranton et al. (2003)
Results

Scranton et al. (2007)
Results

- Angular bins within measurements and between measurements highly correlated.

- Individual surveys have $2-3\sigma$ detections.

- Combining measurements from all 15 galaxy maps, ISW is detected at $>5\sigma$.

- Part of the (S/N) comes from magnification of high redshift samples by foreground structure.

Scranton et al. (2007)
Results

- Angular bins within measurements and between measurements highly correlated
- Individual surveys have 2-3σ detections
- Combining measurements from all 15 galaxy maps, ISW is detected at $>5\sigma$
- Part of the (S/N) comes from magnification of high redshift samples by foreground structure.

Scranton et al. (2007)
The Future of ISW

- Using all current large scale galaxy surveys (2MASS, SDSS, NVSS, & FIRST) covering $0 < z < 2.5$, we detect ISW at $> 5\sigma$. This dark energy signature is completely independent of SNe evidence based on acceleration.

- Efforts to turn this detection in cosmological constraints are underway (Scranton et al., 2007).

- ISW signal is sensitive to changes in dark energy over time, but noise from primary CMB anisotropies keeps (S/N) low ($\sim 6 - 10\sigma$).

- Future galaxy surveys with larger areas and deeper samples can constrain dark energy equation of state to 5% (Hu & Scranton, 2004).

- Measurements combining ISW & magnification effects may also offer another lever arm for describing dark energy.
Our Dark Energy Future...
A Riddle Wrapped in a Mystery Inside an Enigma

• The current crop of surveys have largely resolved the issues surrounding Ω_M and H_0 from 10 years ago.

• Along the way, however, they discovered the existence of dark energy (so named in 1999), which is even more puzzling.

• Currently, dark energy theory is in a state of maximal ignorance. We don’t know

 ★ what the dark energy equation of state ($w \equiv P_{DE}/\rho_{DE}$) is
 ★ whether $w = w(z)$
 ★ whether dark energy clusters (Hu & Scranton, 2004; Bean & Dore, 2003)
 ★ whether “dark energy” is actually a change in gravity (DGP, 2000; Knox, Song & Tyson, 2005; Linder & Huterer, 2006)
A Riddle Wrapped in a Mystery Inside an Enigma

- With no theoretical guidance, the two new questions to answer are
 - What is the Universe’s expansion history over the last 10 Gyr?
 - What is the rate of large scale structure growth over the last 10 Gyr?

- No longer 2 parameters; now we have to constrain two functions.

- We will need measurements that handle the first question (supernovae, baryon acoustic oscillations), the second question (ISW) and both (weak lensing, cluster abundance).

- Just as importantly, we will need to be able to combine these measurements in a statistically meaningful way.
New Instruments, New Realities

- Next generation of surveys to focus on weak lensing, supernovae, baryon acoustic oscillations (BAO), and galaxy clusters.

- Ground based galaxy surveys (LSST), CMB cluster finders (SPT), space-based surveys (SNAP)

- Much larger data sets with more complicated geometries, selection functions, time domain data, etc.
New Instruments, New Realities

- Greater data size & complexity demands new statistical & algorithmic tools and a new way of looking at data.

- Maximizing primary and secondary science (galaxy evolution, cluster physics, stellar physics) will require moving easily between surveys & between measurements.

- Need a unified survey language (STOMP) and a single point of access & exploration (The Google Thing).
STOMP: Space and Time Ordered Mapping Package

http://nvogre.phyast.pitt.edu/gestalt/

- All cosmological statistics are measurements of spatial properties (area, angular distance, density)

- Describe complex geometries on the sphere and possibly spatial variations

- Find unions, intersections, and overlaps between large numbers of observations

- It has to be fast
STOMP: Space and Time Ordered Mapping Package

- Pixelize arbitrary survey footprints with 1” resolution
- Hierarchical scheme: extremely rapid localization & angular statistics
- Spatial information (completeness, flux, temperature, etc) & geometry
Lingua Franca – A World of Applications & Results

- **Angular Correlations**
 - Integrated Sachs-Wolfe Effect
 - $w(\theta)$ (Scranton et al., 2007)
 - Higher Order (Ross et al., 2006)

- **Survey Simulations**
 - Dark Energy Survey (DES)
 - LSST

- **Galaxy Evolution**
 - Galaxy Environment (Welikala et al., 2007)
 - LRG luminosity function (Loh et al., 2007)

- **Weak Lensing**
 - Magnification & Extinction
 - Shear Lensing (Sheldon et al., 2004; Mandelbaum et al., 2005)

- **Spectroscopic Surveys**
 - BAO (Eisenstein et al., 2005)
 - Halo Multiplicity Function (Berlind et al., 2005)

- **Galaxy Clusters**
 - MaxBCG (Koester et al., 2007)
 - Optical/X-ray Counterparts (Miller et al., *in preparation*)
About that Google thing, I can neither confirm nor deny that something very, very cool is about to come out that will change the way that you do astronomy...
Summary

- The current generation of surveys has succeeded in solving the central questions in cosmology from a decade ago.

- Along the way, the richness of the data gathered drove new scientific results that were largely unanticipated prior to the beginning of these surveys.

- The next generation of surveys has the potential to tell us a great deal about the nature of dark energy, but the unavoidable size & complexity of these surveys will be a problem for outside users.

- By unifying the data and analysis sides into a common framework, STOMP surmounts these obstacles, allowing astronomers to easily move within and between surveys and measurements.

- Keep your eyes open for the next couple months. Something very interesting is on the way...