Motivation

WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Black holes somehow tied to galaxy formation:

\[\text{dispersion (km s}^{-1}) \]

\[\text{log} \ M_\bullet (\text{M}_\odot) \]

Ferrarese & Merritt ‘00
Gebhardt+ ‘00
Tremaineet al. ‘02
Motivation

WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Croton+ 06

Yang+ 03
Motivation

WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Yesterday’s Quasar is today’s Red, Early-Type Galaxy:

<table>
<thead>
<tr>
<th>$z = 0$</th>
<th>$z = 0$</th>
<th>$z = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>M_B</td>
<td>$\log(M/M_\odot)$</td>
</tr>
<tr>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

PFH, Lidz, Coil, Myers+
Motivation

WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

- Quasars were active/BHs formed when SF shut down...

BH Formation Times:

Spheroid Formation Times:

Nelan+05; Thomas+05; Gallazzi+06

Hopkins, Lidz, Coil, Myers, et al. 2007
(a) Isolated Disk
- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- “Seyfert” fueling (AGN with M_⊙ > 23)
- cannot redden to the red sequence

(b) “Small Group”
- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- M_\text{halo} still similar to before: dynamical friction merges the subhalos efficiently

(c) Interaction/“Merger”
- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(d) Coalescence/(U)LIRG
- galaxies coalesce: violent relaxation in core
- gas inflows to center: starburst & buried (X-ray) AGN
- starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) “Blowout”
- BH grows rapidly: briefly dominates luminosity/feedback
- remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios
- merger signatures still visible

(f) Quasar
- dust removed: now a “traditional” QSO
- host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A
- QSO luminosity fades rapidly
- tidal features visible only with very deep observations
- remnant reddens rapidly (E+A/K+A)
- “hot halo” from feedback
- sets up quasi-static cooling

(h) “Dead” Elliptical
- star formation terminated
- large BH/spheroid – efficient feedback
- halo grows to “large group” scales: mergers become inefficient
- growth by “dry” mergers
Three Outstanding (Inseparable?) Questions:

- Triggering
- Lightcurves
- Feedback
Three Outstanding (Inseparable?) Questions:

Triggering
- How?
- When?
- Angular Momentum?
- Self-suppression?

Lightcurves
- Lifetimes?
- Self-Regulation?
- Variability?
- Feedback?

Feedback
- Coupling mechanisms?
- “Quasar” vs. “Radio” mode?
- Large-scale impact?
Three Outstanding (Inseparable?) Questions:

- Triggering
- Lightcurves
- Feedback

Relationships:
- Triggering restricts Lightcurves
- Lightcurves initiates/limits Triggering
- Feedback determines Suppression
- Feedback self-regulates Structures
“Feeding the Monster”

WHAT CAN BREAK DEGENERACIES IN DIFFERENT FUELING MODELS?

- If BHs trace spheroids, then *most* mass added in mergers

- Other candidates must also be:
 - Fast, violent
 - Blend of gas & stellar dynamics

- Why?
 - Soltan (1982): bulk of SMBH mass density grown through radiatively efficient accretion in quasars
 → gas dynamics; rapid (~ few 10^7 years)
 - Lynden-Bell (1967): orbits of stars redistributed in phase space by large, rapid potential fluctuations
 → stellar dynamics; freefall timescale
Candidate Process: Gas-Rich, Major Merger

- Locally, seen related to:
 - growth of spheroids
 - causing starbursts (ULIRGs)
 - fueling SMBH growth, quasar activity

Komossa et al. (2003)

NGC 6240

Quasar Host Galaxies

HST • WFPC2

PRC96-35a • ST ScI OPO • November 19, 1996
J. Bahcall (Institute for Advanced Study), M. Disney (University of Wales) and NASA
Plausible Physical Mechanism

- Tidal torques \Rightarrow large, rapid gas inflows (e.g. Barnes & LH 1991)
- Triggers starburst (e.g. Mihos & LH 1996)
- Feeds BH growth (e.g. Di Matteo et al. 2005)
- Merging stellar disks grow spheroid
- Requirements:
 - major merger
 - supply of cold gas
 ("cold" = rotationally supported)

Barnes & Hernquist (1996)
Other Fueling Mechanisms?

- Stellar Mass Loss
- Low Accretion Rate
- No Bulge Formation/Violent Relaxation
- Can’t “allow” this gas to cool in already-formed ellipticals (too much star formation!)
 -- Recurring mini-bursts? PG-like quasars?

Harker et al. (2006)

Ciotti & Ostriker
Other Fueling Mechanisms?

- **Cooling Flows**
 - Relatively Late Phenomenon
 - No Bulge Formation
 - BHs already massive in cooling-flow clusters
 - *But* -- important for “radio mode” accretion?

Merloni et al. (2007)

Croton et al. (2005)
Other Fueling Mechanisms?

- Minor Mergers
 - Not so violent - probably don’t dominate spheroid formation (LMC/SMC)
 - Can they torque much gas?
 - Major mergers dominate mass growth in mergers (~L*)

Besla et al. (2007)
Other Fueling Mechanisms?

- Secular Evolution/Disk Instabilities
 - Most mass in “classical” bulges, not “pseudobulges”:
 - But, *are* important below <~ Sa-types
 - Does it really solve the angular momentum problem? (Jogee et al.)

Springel et al. (2005)
Some Basic Checks:

• Construct generic model of merger-driven quasar activity (PH et al. 2007; astro-ph/)

 • Populate halo+subhalo MFs (from cosmological simulations) with “initial” galaxies (according to HODs/empirical constraints)
 • Let them grow (star formation & accretion)
 • Let them merge
 • Assume major, gas-rich merger > BH/bulge
 • “Paint on” detailed simulations where necessary
Predictions

- Predicts the QLF vs. redshift, luminosity, wavelength
Predictions

- Predicts the QLF vs. redshift, luminosity, wavelength
- There are “enough” mergers!

PH07
The Difficulty

• Quasar is at the *end* of the merger
 • Host is relaxed/tidal features fade
 • SB dimming & PSF de-convolution
 • Automated routines classify even *perfect* images as “relaxed” spheroids in the quasar phase (Lotz et al.)

• Comparison samples?
 • Same *galaxy* masses (not luminosities)

Schweizer (1982)
The Difficulty

e.g. Canalizo, Bennert et al.: PG QSO Hosts
The Difficulty

- Red or IR-bright QSOs:
 - Closer to the action?
 - Nearly ~100% clear merger remnants (Hutchings et al., Guyon et al., Urrutia et al.)
- Need to prove they will turn their bluer “cousins”
Color Evolution of Quasar Hosts

- Merger efficiently exhausts gas; feedback can expel what remains > remnant rapidly reddens

PH07

- Not true of secular evolution/pseudobulges (Kormendy, Balcells et al.)
Color Evolution of Quasar Hosts

Sanchez+ '05
GEMS
0.5 < z < 1.1
Optical QSOs

Nandra+ '06
DEEP2
0.7 < z < 1.4
X-ray QSOs

Sanchez+ '05
GEMS
0.5 < z < 1.1
Optical QSOs
Color Evolution of Quasar Hosts

- Quasars live in *blue spheroids*
- Need to go to next level: full stellar populations - are these really post-SB?
- Examine the time/redshift dependence

Silverman et al.
Where Quasars Are Born

- Croom et al. (2005) (+others): from 2dF QSO survey
 - $M_{\text{halo}}(\text{QSO host}) \sim 3.0 \pm 1.6 \, h^{-1} M_{\odot}$ at $z \sim 1 - 6$
 - Faucher-Giguere et al. (2006): independent, similar conclusion from proximity effect analysis
- HOD theory: characteristic halo mass for 2 large galaxies
- Simulations: "Small Group" scale of efficient $\sim L^*$ galaxy mergers
Where Quasars Are Born

- Is clustering of \(\sim L^*\) quasars different from \(\sim L^*\) disks (secular expectation)?

PH07
Where Quasars Are Born

- Observed excess of quasar clustering (quasar-galaxy and quasar-quasar pairs) on small scales, relative to “normal” galaxies with the same masses/large-intermediate scale clustering

- Predicted by merger models (Thacker & Scannapieco et al., PFH)
Where Quasars Are Born

• Small-Scale Excess:
 • Predicted in merger models
 • Mergers biased to regions with *small-scale* overdensities
 • Seen in cosmological simulations (Thacker et al.)
 • Seen in merger remnants! (Goto et al.; Hogg et al.)
• Not expected in secular/instability, cooling flow, stellar mass loss, or other models
Where Quasars Are Born

- Small-Scale Excess:
 - Not seen in Seyferts:
 - Suggests different processes dominate fueling below $M_B \sim -23$ ($M_{bh} \sim 10^7$)?

Serber et al. 2006
Morphology of Quasar Hosts

- Mergers form “classical” bulges; secular evolution forms “pseudobulges”
- Pseudobulges important only in relatively late-type galaxies; small M_bh
- Bar fraction & pseudobulge fraction ~constant to z~1-2

Upper limit: bar contribution to the QLF

Upper limit: pseudobulge contribution to the QLF

PFH07
Self-Regulation
and
Quasar Lightcurves
M-sigma Relation Suggests Self-Regulated BH Growth

PREVENTS RUNAWAY BLACK HOLE GROWTH

If only ~1% of gas mass lost angular momentum, would get runaway accretion!

Di Matteo et al. 2005

Springel et al. 2004
Simplest Idea:

FEEDBACK ENERGY BALANCE

- Constant fraction \((h) \) of BH radiated energy couples to the ISM: couple

\[
E = h \times (e_r \times M_{bh} \times c^2)
\]

when this is comparable to the binding energy of the gas in the galaxy, it will be blown out

\[
E_g = y \times (M_{halo} \times v_c^2) \sim v_c^5 \sim s^5
\]

So, self-regulate when \(M_{bh} \sim s^5 \)

(Silk & Reese 1998)

- But....
Which Correlation Is “Most Fundamental”?

COMPARE RESIDUALS

at fixed sigma:

at fixed M_bul:

at fixed R_e:

\[x \propto R_e^{0.42} \]
\[x \propto \sigma^{2.19} \]
\[x \propto \Omega^{3.03} \]

\[P_{\text{null}} = 9.8 \times 10^{-4} \]
\[P_{\text{null}} = 8.0 \times 10^{-4} \]
\[P_{\text{null}} = 4.4 \times 10^{-5} \]

\[x \propto M^{0.52} \]
\[x \propto R_e^{1.08} \]
\[x \propto M^{1.52} \]

\[P_{\text{null}} = 2.1 \times 10^{-3} \]
\[P_{\text{null}} = 4.6 \times 10^{-3} \]
\[P_{\text{null}} = 1.2 \times 10^{-4} \]

\(~3\sigma\) significant residual trend with respect to ANY single variable correlation!
Which Correlation Is “Most Fundamental”?
WHAT ELIMINATES THE SECONDARY VARIABLES?

➢ Find a FP-like correlation:
 - $M_{bh} \sim M_{bul}^a s^b$
 - $M_{bh} \sim R_e^a s^b$
 - $M_{bh} \sim M_{bul}^a R_e^b$

➢ Given the spheroid FP, these are the same
Which Correlation Is “Most Fundamental”?
WHAT ELIMINATES THE SECONDARY VARIABLES?
What Does this FP-Like Relation Imply?

IS THERE ANY PHYSICAL MEANING?

- Reasonably close to binding energy, but with “tilt”:
 - $M_{bh} \sim E_{\text{binding}}^{2/3} \sim (M_{\text{bul}} s^2)^{2/3}$
Do Feedback-Regulated Simulations Predict This?

SIMPLE COUPLING OF BH RADIATED ENERGY TO SURROUNDING GAS IN A MERGER

- BH feedback self-regulates growth in ~fixed potential
- only “feel” the local potential of material to be unbound
Can We Get Away From This?

HOW DOES THE RELATION DEPEND ON INITIAL CONDITIONS?

Primarily a local correlation with *final* state:
- Can’t get “off” this correlation if feedback still self-regulates

Can move *along* the correlation
- Changes projections:
 - $M_{bh} - M_{bul}$
 - $M_{bh} - s$
Moving Along the BH FP-Like Correlation

GIVEN THIS CORRELATION, HOW DO YOU MOVE IN ITS PROJECTIONS

- Increased dissipation \Rightarrow smaller, more compact remnants (Cox et al.; Robertson et al.)
- Deepens the central potential
Moving Along the BH FP-Like Correlation
IMPLICATIONS FOR REDSHIFT EVOLUTION

- High-z galaxies are more gas-rich:
 - Expect more compact remnants
 - Khochfar & Silk
 - See them: smaller R_e, larger s at fixed M_{bul}
 - Trujillo et al.; Zirm et al.
Moving Along the BH FP-Like Correlation

IMPLICATIONS FOR REDSHIFT EVOLUTION

\[M_{\text{bh}} \sim (M_{\text{bul}} s^2)^{2/3} \]

- Larger \(M_{\text{bh}} \) at fixed \(M_{\text{bul}} \)
 - Peng et al.; Fine et al.; Shields et al.; Merloni et al.; Walter et al.
- Different evolution in \(M_{\text{bh}} \)-\(M_{\text{bul}} \) & \(M_{\text{bh}} \)-s
What about other fueling mechanisms?

BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS
What about other fueling mechanisms?

BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS
What about other fueling mechanisms?

BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS
Generalizing the Model

NOT ALL AGN ARE MERGER-DRIVEN

- Almost any (ex. radio) AGN feedback will share key properties:
 - Point-like
 - Short input (~ t_{Salpeter})
 - $E \sim E_{\text{binding}}$ (defines when the feedback is important)

- Suggests analytical solutions for decay of accretion rates in feedback-driven winds or blastwaves
 - Agrees well with simulations!

- Generalize to “Seyferts”
 - Disk-dominated galaxy, central molecular clouds
 - Calculate accretion rate(time) when a cloud “collides” with the BH
Quasar Lightcurves:

- Multi-phase ISM decomposition: gas+dust+metal columns
- Columns Evolve
 - Angle-dependent effect (classical unification)
 - Evolution-dependent effect
- "Blowout" phase

Multi-phase ISM decomposition: gas+dust+metal columns
Feedback Determines the Decay of the Quasar Light Curve
LESS OBVIOUS, BUT IMPORTANT IMPLICATIONS VIA THE QUASAR LIFETIME

- Simulation: Explosive blowout drives power-law decay in L
- No Feedback:
 - Runaway growth (exponential light curve)
 - “Plateau” as run out of gas but can’t expel it (extended step function)

$1/\beta = -0.60 \pm 0.23$
$1/\beta = -0.44 \pm 0.05$
$1/\beta = -0.20 \pm 0.05$

Hopkins et al. 2006a
“Quasar Lifetime”: a conditional, luminosity-dependent distribution

Robust as a function of BH mass or peak QSO luminosity

- General solution depends just on energy injection

Feedback Determines the Decay of the Quasar Light Curve

LESS OBVIOUS, BUT IMPORTANT IMPLICATIONS VIA THE QUASAR LIFETIME

PFH 2006
Given the Conditional Quasar Lifetime, De-Convolve the QLF
QUANTIFIED IN THIS MANNER, UNIQUELY DETERMINES THE RATE OF “TRIGGERING”

\[
\phi(L) \equiv \frac{d\Phi}{d\log{L}}(L) = \int \frac{dt(L, L_{\text{peak}})}{d\log{L}} n(L_{\text{peak}}) d\log(L_{\text{peak}}).
\]

If every quasar is at the same fraction of Eddington, the active BHMF (and host MF) is a trivial rescaling of the observed QLF.
Feedback-regulated lifetime drives a given QSO to lower L after blowout, and spends more time at low-L

- Much stronger turnover in formation/merger rate
- Faint-end QLF dominated by decaying sources with much larger peak luminosity/hosts

\[
\phi(L) \equiv \frac{d\Phi}{d\log L}(L) = \int \frac{dt(L, L_{\text{peak}})}{d\log(L)} n(L_{\text{peak}}) d\log(L_{\text{peak}}).
\]
Quasar Clustering is a Strong Test of this Model
IF FAINT QSOS ARE DECAYING BRIGHT QSOS - SHOULD BE IN SIMILAR HOSTS

Weak dependence of clustering on observed luminosity

- (Croom et al., Adelberger & Steidel, Myers et al., Coil et al., Porciani et al.)

Light-Bulb

Self-Regulated Lifetimes

Adelberger & Steidel 05
Myers et al. 05
Lidz et al. 2005

Hopkins, Lidz, Coil, Myers et al. 2007
Luminosity-Dependent Density Evolution
“SECOND ORDER”

PFH, Richards, Hernquist
(also: Hasinger et al. 2007)
What Do We Learn?

“SECOND ORDER”

Equivalently, slopes flatten with z
What Do We Learn?

“SECOND ORDER”

- Faint End (X-ray “LDDE”)
 - Change in effective duty cycle/lifetime for more massive BHs at low mdot

Luminosity-Dependent Quasar Lifetimes

![Graph showing luminosity-dependent quasar lifetimes](image)
What Do We Learn?

“SECOND ORDER”

$1/\beta = -0.60 \pm 0.23$

$1/\beta = -0.44 \pm 0.05$

$1/\beta = -0.20 \pm 0.05$

Constrain Lifetimes + Feedback Physics
The Feedback: Where Does It Go?

QUASAR FEEDBACK *DOES* EXIST

Gabel & Arav et al.

but...

White+ 06
The Simulations

WHAT ABOUT THE FEEDBACK PRESCRIPTION?

- Modeling “Quasar” Feedback
- ~5% to match observed M-sigma normalization (Silk & Rees ‘98)
 - Line opacities + AGN spectrum (Sazonov et al.)
 - Momentum driven winds (Murray et al.)
 - Disk wind simulations (Proga et al.)

- Probably not radio jets
The feedback by the central black activity may drive a strong quasar wind

GAS OUTFLOW BY AGN FEEDBACK

(outflow reaches speeds of up to ~1800 km/sec)
Outflows are Explosive and Clumpy

- **Rapid BH growth** => point-like injection
 - Explosion, independent of coupling

- **Clumpy**
 - ULIRG cold/warm transition (S. Chakrabarti)
 - CO outflows (D. Narayanan)
Observational Prospects
“QUASAR” WINDS

- High-velocity outflows
 - ~1000 km/s at 1-1000 kpc
 - Local metal absorbers (Bowen+ 06)
 - BALs at “large distances” (deKool+ 01)
 - High-v outflow in non-BALs (Pounds 06)
- Clumpy substructure
- Preferentially w. high-Eddington ratio?

Graphs and plots showing data points and trends related to the observational prospects of quasar winds.
Feedback-Driven Winds
HEATING & ENTROPY

- Single, high-impact event can “set up” observed T/S profiles & correlations in ellipticals
- Groups, even Clusters as well?
Reflected in the Bright-End Slope of the QLF?

“SECOND ORDER”

- Bright End
 - (Systematics?)
 - Reflects shape of halo MF/buildup?
 - Feedback again?

Scannapieco & Oh 04

Croton+ 06
Summary

• Our picture for quasar evolution can incorporate more detail:
 – complex, evolving lightcurves, lifetimes
 – evolving pattern of obscuration: increases with luminosity, drops during blowout

• “Higher-Order” measurements can break model degeneracies:
 – clustering vs: spatial scale, luminosity, redshift
 – QLF shape evolution

• How do we more tightly link observations of hosts & descendants (galaxies) with the quasars themselves?
Predictions

Hopkins, Bundy, Hernquist+ 06

Borch+06; Bundy+06; Fontana+04,06; Pannella+06; Franceschini+06
Predictions

- Observed RS Buildup to $z > \sim 1$ = Expectation if *all* new mass to the RS “transitions” in a quasar-producing merger

Hopkins, Bundy, Hernquist+ 06
Moving Along the BH FP-Like Correlation

IMPLICATIONS FOR REDSHIFT EVOLUTION

Recent cosmological simulations: same effect

Di Matteo et al. 2007
The Seyfert Luminosity Function
A STOCHASTIC BUT FEEDBACK-REGULATED MODEL

Hopkins & Hernquist 2006

“Seyferts” (disk-dominated; stochastic cloud fueling)

Post-Starburst Spheroids (post-merger lightcurve decay)

“Dead” Hot gas/Stellar wind fueled systems

Hao+ 05; Ueda+ 03;
Also...
Expel Metal-Enriched Gas & Build Up X-Ray Halo

Cox et al. 2005