The Origin of the Highest Energy Cosmic Rays

Laura Watson, Daniel Mortlock and Andrew Jaffe

Imperial College London

23 June 2010, CCAPP Anisotropy Mini-Workshop

Ultra High Energy Cosmic Rays (UHECRs): Energies and Origins

- $\lesssim 10^{15}$ eV: possible for particles to be accelerated to these energies by:
 - solar and planetary magnetic fields
 - binary star systems
 - supernovae

- $\gtrsim 10^{18}$ eV: acceleration methods unknown, but possible progenitors include:
 - active galactic nuclei (AGNs)
 - gamma ray bursts
 - new physics

Interested in ultra high energy cosmic rays (UHECRs) ($\gtrsim 10^{18}$ eV).

Credit: W. Hanlon, Utah
The Greisen Zatsepin Kuzmin (GZK) effect affects UHECRs with energies $\gtrsim 5 \times 10^{19}$ eV.

Highly relativistic particles:
- see cosmic microwave background (CMB) photons blueshifted.
- lose energy by interacting with CMB.

Protons with $E \gtrsim 5 \times 10^{19}$ eV:
- interact via: $p + \gamma \rightarrow p + \pi$
- lose $\sim 0.2E$ per interaction.
- have mean free path ~ 4 Mpc.

GZK effect places limit on plausible distances to UHECR progenitors of ~ 100 Mpc.

Achterberg et al. 1999

Laura Watson Imperial College London

The Origin of the Highest Energy Cosmic Rays
The Pierre Auger Observatory (PAO) South covers 3000 km2 near Malargue, Argentina.

PAO detects shower of secondary particles created after CR hits atmosphere.

1600 surface detectors (SDs, Cerenkov tanks) observe the extent of the halo.

4 fluorescence detectors (FDs) look at the trajectory of core of shower (\sim CR).

Credit: Pierre Auger Collaboration
Data and Current Results

Sky map of PAO UHECR events (black) and VCV AGNs (red).

- We use the same data as used by Pierre Auger Collaboration (PAC) 2007:
 - 27 UHECR events detected by PAO.
 - Veron-Cetty & Veron (VCV) 2006 catalogue of AGN.

- Current results:
 - Varying correlations between UHECR arrival directions and AGN positions (PAC 2007, 2010).
 - Statistical methodologies used ignore information and introduce problematic fine-tuning.
Bayesian Approach and Model Used

- Bayesian approach has advantage of taking account of more of the available information…

- Model:
 - Progenitors: UHECRs emitted from either AGNs ('sources' with initial power-law spectrum \(\frac{dN(E_{\text{emit}})}{dE_{\text{emit}}dt} \propto E_{\text{emit}}^{-\alpha} \) where \(\alpha \sim 3.6 \)) at a rate 's’, or a uniform background at a rate 'b’.

- Propagation: 1. GZK attenuation of the source (AGN) signal of form:
 \[E_{\text{rec}} = E_{\text{emit}}(1 - f_{\text{GZK}})^{D/L_{\text{GZK}}} \]
 where \(f_{\text{GZK}} \sim 0.2E, L_{\text{GZK}} \sim 4 \text{ Mpc} \).

 2. received flux \(F \propto \frac{1}{4\pi D^2} \)

- Detection: 1. known detector acceptance as a function of sky location \(\epsilon(\theta, \phi) \)

 2. magnetic angular deflection and experimental uncertainty → Gaussian smearing \(G \) with \(\sigma = 3^\circ \)
Bayesian Approach and Model Used

- Bayesian approach has advantage of taking account of more of the available information...

- **Posterior:** \[P(s, b|\hat{n}_p) = \frac{P(\hat{n}_p|s,b)P(s,b)}{P(\hat{n}_p)} \]

- **Prior:** uniform in source and background rates, s and b: \(P(s, b) = \text{const.} \)

- **Likelihood:** Poisson pdf: \[P(\hat{n}_p|s, b) = \prod_p \frac{\hat{n}_p^p e^{-\hat{n}_p}}{\hat{n}_p} \]

with mean \(\bar{n}_p = [(\sum_{\text{AGN}} \frac{(1-f_{\text{GZK}})(\alpha-1)D/L_{\text{GZK}}}{4\pi D^2} Gs) + b] \epsilon(\theta, \phi) \)
Bayesian Analysis of Simulated Data

Background only simulation:

Posterior recovers simulation input parameters:

\[s \rightarrow \overline{N}_s = 0 \]
\[b \rightarrow \overline{N}_b = 27 \]
Bayesian Analysis of Simulated Data

VCV AGN only simulation:

Posterior recovers simulation input parameters:

\[s \rightarrow \bar{N}_s = 27 \]
\[b \rightarrow \bar{N}_b = 0 \]
Bayesian Analysis of PAO Data

PAO data:

Mean expectation values of numbers of cosmic rays received (with uncertainties forming 68% confidence levels) are:

\[
\overline{N}_s = 8.7^{+3.3}_{-4.9}, \\
\overline{N}_b = 20.3^{+4.5}_{-6.2}
\]

Posterior probability density as a function of UHECR background and VCV AGN rates

Contours enclose 68%, 95% and 99.7% of the posterior probability.
Bayesian Analysis of PAO Data

Mean fraction of UHECRs from AGNs (uncertainties from 68% confidence levels):

$$F_{AGN} = 0.30^{+0.13}_{-0.16}$$
Conclusions and Future Work

Bayesian analysis provides:

- clear advantages over other statistical methodologies.
- encouraging results so far.

Further work:

- better data - e.g. 56 PAO UHECRs, Swift/BAT AGN catalogue.
- improve modelling - e.g. better representation of GZK effect.
- use more information - e.g. measured UHECR energy.

Acknowledgements:

- Johannes Knapp, Angela Olinto, Benjamin Rouille de’Orfeuil, Subir Sarkar, Abraham Achterberg and Roberto Trotta.
Bayesian Approach and Model Used

Bayesian approach has advantage of taking account of more of the available information...

Model:
- background rate b, source rate s and initial source power spectrum $\frac{dN(E_{\text{emit}})}{dE_{\text{emit}} dt} \propto E_{\text{emit}}^{-\alpha}$
- received energy $E_{\text{rec}} = E_{\text{emit}}(1 - f_{\text{GZK}})^{D/L_{\text{GZK}}}$ and received flux $F \propto \frac{1}{4\pi D^2}$
- detector acceptance $\epsilon(\theta, \phi)$ and Gaussian smearing G

Posterior: $P(s, b|\hat{n}_p) = \frac{P(\hat{n}_p|s,b)P(s,b)}{P(\hat{n}_p)}$

Prior: uniform in source and background rates, s and b: $P(s, b) = \text{const}$.

Likelihood: Poisson pdf: $P(\hat{n}_p|s, b) = \prod_p \frac{\hat{n}_p e^{-\hat{n}_p}}{\hat{n}_p}$

with mean $\bar{n}_p = [(\sum_{\text{AGN}} \frac{(1-f_{\text{GZK}})(\alpha-1)D/L_{\text{GZK}}}{4\pi D^2} Gs) + b] \epsilon(\theta, \phi)$