DeepCore: Opening a New Energy Window for the IceCube Neutrino Observatory

Darren R. Grant
The Pennsylvania State University

CCAPP: Novel Searches for Dark Matter Workshop
The IceCube Neutrino Observatory

- Very large scale “hybrid” observatory
 - approximate diameter 1 km

- IceTop:
 - Surface air shower detector array.
 - Threshold approx. 300 TeV.

- AMANDA:
 - historical predecessor to IceCube.
 - 19 strings, 677 optical modules (OMs).
 - Densely instrumented for lower energy threshold (approx. 100 GeV).

- IceCube:
 - 80 strings with 60 Digital OMs per string.
 - Interstring spacing approx 125 m, Digital OM spacing 17 m.
The Energy Gap in neutrino physics...

Accelerator based

100 GeV 1 TeV 10 TeV
AMANDA

IceCube/KM3Net

Non-accelerator based

10 MeV 100 MeV 1 GeV 10 GeV

Darren R. Grant - The Pennsylvania State University
The Energy Gap in neutrino physics...

Accelerator based

Solar neutrinos

10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 PeV

IceCube/KM3Net

RATIO TO SSM PREDICTION

ENERGY (MeV)

November 17,

Darren R. Grant - The Pennsylvania State University
The Energy Gap in neutrino physics...

Accelerator based

Solar neutrinos
10 MeV

100 MeV
atmospheric neutrinos

1 GeV

10 GeV

100 GeV

1 TeV

10 TeV

10 PeV

IceCube/KM3Net

Darren R. Grant - The Pennsylvania State University
The Energy Gap in neutrino physics...

Non-accelerator based
The Energy Gap in neutrino physics...

Non-accelerator based
The Energy Gap in neutrino physics...
The Energy Gap in neutrino physics...

Accelerator based

Non-accelerator based

Solar neutrinos
10 MeV
100 MeV atmospheric neutrinos
1 GeV
10 GeV
100 GeV
1 TeV
10 TeV
10 PeV

K2K
MINOS
Opera

IceCube/KM3Net

100 MeV
1 GeV
100 GeV
10 TeV

Gap
Closing the Gap: The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; $\sigma_t \sim 2$ns)

- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.

- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; $\sigma_t \sim 2\text{ns}$)

- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.

- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; \(\sigma_t \sim 2\text{ns} \))
- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.
- 4\(\pi\) detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

SPE Charge histogram averaged over many DOMS. HighQE DOMs look just like the standards.

Optical Efficiency - measured at 405 nm. Efficiency ratio \(<\text{high-QE DOM}>/<\text{Standard DOM}> = 25.1/18.1 = 1.39\)
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; $\sigma_t \sim 2$ns)
- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.
- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

Shown is the measured noise rates for HighQE DOMs (purple) and standard DOMs (blue).
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; \(\sigma_t \sim 2\)ns)

- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.

- \(4\pi\) detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

Shown is are the high voltage setting to achieve a gain of 1e7.
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice. (Fiducial volume ~15 MT; σ_t ~ 2ns)

- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.

- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

Preliminary Trigger Level
The DeepCore

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice.
- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.
- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

- 375 m thick detector veto - three complete IceCube DOM layers surround DeepCore.
The **DeepCore**

- 6 new strings - 60 High Quantum Efficiency PMTs each in the deepest/clearest ice.
- Dense instrumentations (7.0 m DOM spacing; 72 m inter-string spacing). Energies few GeV - 1 TeV.
- 4π detector using the IceCube detector as an active veto. Access to the Southern hemisphere and year round for the Sun.

A first Monte Carlo based filter algorithm shows 10^{-4} background rejection with >98% signal efficiency.

This should be compared to the previously utilized IceCube first filter steps, an improvement factor of nearly 500.
The **DeepCore**

Physics Potential - Indirect WIMP Searches

- Addition of DeepCore provides significant improvements in WIMP searches for masses between 50 and 500 GeV.

\[
\begin{align*}
\chi\chi &\rightarrow \bar{b}b(\tau^+\tau^-) \rightarrow \nu, & \text{soft } E_\nu \text{ spectrum} \\
\chi\chi &\rightarrow W^+W^- \rightarrow \nu, & \text{hard } E_\nu \text{ spectrum}
\end{align*}
\]

Soft Channel

Hard Channel

![Effective Volume vs. Neutralino Mass](image1)

![Effective Volume vs. Neutralino Mass](image2)

November 12, 2008
Summary...

- Initial studies for the HighQE DOMs show excellent performance.
- First veto algorithms show great promise to reach 10^6 rejection levels with >95% signal efficiency.
- Current efforts directed at new reconstruction algorithms for the low energy events.
- DeepCore represents incredible opportunity for complimentary physics (Indirect WIMP searches; NuMu disappearance; NuTau appearance...) between the accelerator and non-accelerator based communities and closes the historical energy gap with smaller scale neutrino experiments.