Overview and Searches at Super-Kamiokande

Yoshitaka Itow
Solar-Terrestrial Environment Laboratory
Nagoya University
for Super-Kamiokande Collaboration

Novel Searches for Dark Matter 17/11/2008
CCAPP, Ohio State University
Introduction
- Super-Kamiokande detector
- Atmospheric neutrino analysis

Indirect WIMP searches at Super-K
- Published results
- Recent analysis
 - Recently started by T.Tanaka for his PhD work

Summary
Super-Kamiokande detector

Operation since Apr 1996

- 50kt water Cherenkov
- 1000m underground
- ID viewed by 11K PMT
- 2m thick OD for veto
- Fiducial mass 22.5kt
- Effective area 1200m²
- E_th > 4.5MeV
- E_th > 1.7GeV for upµ
 (7m pass length cut)
Y. Itow, Overview and Searches at Super-K

10 years of Super-Kamiokande

1996.4 Start data taking
1998 Atmospheric ν oscillation (SK)

1999.6 K2K started

2001 Solar ν oscillation (SNO+SK)

2001.11 Accident
 partial reconstruction

2002.10 SK-II started

2005 Accelerator ν oscillation (K2K)

2005.10 SK-II finish
 full reconstruction

2006.7 SK-III started
 DAQ upgrade

2008.9 SK-IV started

2009.4 T2K will start
Atmospheric ν categories at SK

Energy Atm_ν for each category

$E_\nu (\text{GeV})$
Usual μ, radiative μ

Usual downgoing μ

“Showering” downgoing μ
Up-showering μ

- Upgoing through muon sample is separated into “showering” or “non-showering”

Example of Showering muon in Super-K-II
Zenith Angle Distributions (SK-I + SK-II)

Livetime
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Sub-GeV e-like $P < 400$ MeV/c vs $\nu_\mu - \nu_\tau$ oscillation (best fit)
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Sub-GeV μ-like $P > 400$ MeV/c vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Multi-GeV e-like vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Multi-GeV μ-like vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

PC stop vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

PC through vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Upward stopping μ vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Upward through-going non-showering μ vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

Upward through-going showering μ vs null oscillation
- SK-I
 - 1489d (FCPC)
 - 1646d (Upmu)
- SK-II
 - 804d (FCPC)
 - 828d (Upmu)

All distributions agree with oscillated expectations
Published Indirect WIMP Search at Super-K

- Based on upward through going \(\mu \) sample
 - Energetic \(\nu \) from the sun
 - Energetic \(\nu \) from the earth center
 - (Energetic \(\nu \) from the Galactic center)
Advantage of using upgoing μ

<table>
<thead>
<tr>
<th>Vtx contained</th>
<th>$\sigma \cdot E_{\nu}$</th>
<th>$V=\text{const}$</th>
<th>$N_{SK} \cdot E_{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgoing μ</td>
<td>$\sigma \cdot E_{\nu}$</td>
<td>$V \cdot E_{\nu}$</td>
<td>$N_{SK} \cdot E_{\nu}^2$</td>
</tr>
</tbody>
</table>

- 1 TeV ν produces up-going through μ at SK
- Assuming $E_{\mu} \sim 1\text{TeV}$, $R_{\mu} \sim 1000\text{m}$

Effective area $S=1200\text{m}^2$

Effective target volume $S \cdot R_{\mu} \cdot \rho_{\text{rock}} \sim 3 \times 10^{12}\text{g}$

High E_{ν}s from vector boson decays dominate in a event rate
Neutrino flux at Earth as BG

Solar ν_e

SN ν @G.C.

B8

reactor ν_e

Atmospheric ν_μ

Galactic neutrinos

Relic supernova neutrinos ν_e (200 cm$^{-2}$sec$^{-1}$)

ν_e from the earth

Cyg X-3 ($\propto E^{-2.5}$)

SK
Angular correlation between ν and μ

Contain 90% of events

Neutralino mass (GeV)

Y. Itow, Overview and Searches at Super-K

Upmu’s from the sun

$\cos \theta_{\text{sun}}$

The number of upward thru-muons towards the sun

WIMP signal expected in this region

Upmu’s from the earth center

Zenith angle

#ev in each cone angle

WIMP signal expected in this region

BOX : MC w/o osc / Hist : MC w. osc

Upper limits for upward muon flux

SK-I up thr-\(\mu\) 1679.6 days

10^{-14}\mu/cm^2s

\(\sim 3000\mu/km^2yr\)

Limit on WIMP-induced upward muons (cm^{-2} sec^{-1})

From the Sun

From the earth center
Comparison to direct detection exp.

From the earth (SI) 10^4-10^6 m2 ν detector \rightarrow 1kg Ge detector
From the sun (SD) 10-500 m2 ν detector \rightarrow 50g H detector

Max ratio (M) = \[
\frac{\text{Direct Detection Rate} (M,\sigma)}{\text{Super-K flux limit} (M)}
\]

M.Kamionkowski et al.
PRL 74(1995)5174
Comparison to direct detection

SI cross section

SD cross section

SK limit
Recent progress of analysis
(By T. Tanaka)

- Lowering ν energy window
 - Add up stop μ
 - Sensitivity for light WIMP ($>18\text{GeV} \rightarrow >10\text{ GeV}$)

- Energy dependent analysis
 - Divided into up-stop μ, non-showering μ and showering μ
 - Consider typical E_ν of 3 up μ categories

- Increasing statistics
 - Add SKII+SKIII
 - 1679.6 days \rightarrow 2828.3 days
Motivation to include lower energy samples

WIMP-proton σ_{SD}

Low mass range (> a few 10 GeV) is ruled out by usual SUSY parameter. But recent DAMA result considering channeling effect is not rejected at low mass region (afew ~ 10 GeV) by indirect search.

New limit from COUPP excludes the region?

Science, 319: 933-936 (2008).
Y. Itow, Overview and Searches at Super-K

Ratio of each category of event

- Black: FC mu-like (multi-GeV)
- Red: PC
- Green: stopping upmu
- Yellow: non-showering upmu
- Blue: showering upmu

Given E_ν, fraction of each categories shown
Cos θ_{sun} in 3 categories of upmu

SKI+II+III data (2828.344 day)
MC (with oscillation)

Stopping
Non-showering
Showering
Updating muon flux limit

Expected flux region
(E > 1 GeV)

<table>
<thead>
<tr>
<th>mass (GeV)</th>
<th>flux (10^{-15} cm^{-2}sec^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.96</td>
</tr>
<tr>
<td>100</td>
<td>6.11</td>
</tr>
<tr>
<td>10^3</td>
<td>4.16</td>
</tr>
<tr>
<td>10^4</td>
<td>3.43</td>
</tr>
</tbody>
</table>

SK I+II+III (2828.3 days)
Using 3-up μ samples

Now working for converting to σ_{SD} limit
Summary

- **Super-Kamiokande**
 - 22.5kt FV, 1200m2 area
 - For u_μ, $E_{u_\mu} > 1.7$ GeV, angular resolution ~ 1deg,

- **Indirect search (Super-K 2004)**
 - From the sun, the earth center (and the galactic center)
 - Muon flux limit 10^{-14} μ/cm2s
 - Indirect search from the sun is still the best limit for σ_{SD}

- **Updating at neutrino08**
 - Including lower E samples (up stop-μ)
 - Energy dependent analysis
 - Push down by 1.4 times for $M_\chi > 10$GeV

- **On-going activity**
 - Use FC/PC? Need new simulations to translate to σ limit
 - Search for diffuse ν from halo based on FC