Searching for dark matter in the Milky Way halo with GLAST

Aaron Sander
Richard Hughes, Brian Winer, and the LAT Collaboration

The Ohio State Physics Department
8th Great Lakes Cosmology Workshop
June 3, 2007
Dark Matter

• Evidence for Dark matter
 – Rotation Curves
 – Cluster Dynamics
 – Necessary for Structure formation

• Many candidates for the Dark Matter particle: axion, neutralino, sneutrino, gravitino, and others.
 – Considering neutralino for this analysis.

“Bullet Cluster” (astro-ph/0608407)
Gamma-Ray Large Area Space Telescope (GLAST) Detector

- Segmented anticoincidence detector
- 16 Tower modules in 4 x 4 array
- Each module contains
 - 18 Layers of Silicon Tracker interleaved with Tungsten
 - 8 Layer CsI crystal calorimeter
- For γ-ray energies above 1 GeV
 - Angular resolution of better than 1°
 - Effective Area $\sim 8000 \text{ cm}^2$
- Launch Scheduled for December 2007
GLAST Full Sky simulations

Full Simulation
(Seth Digel)

Dark Matter
(Baltz et. al. 2006)
Why look in the MW halo?

- High Statistics from using the whole sky
- Allows for sampling of the DM spectra
- Less uncertainties in dark matter profiles outside the galactic center
- Avoid high density of astrophysical sources at the galactic center

(Y. Edmonds et al, First GLAST Symposium, 2007)
Energy Distribution

- With the high statistics from the halo we can measure the spectra of the dark matter signal
- Notice the separation between the diffuse model (black) and the dark matter (colored)
Search for DM over the full Sky

- Pseudoexperiments
 - Sample the model distribution to create an ensemble of independent replications of the same experiment
 - With the samples from *gtobssim* we create pseudo experiments and fit the 3D sky (l,b, and Log E)
 - We extract a fitted mass and number of signal events for each pseudoexperiment
 - From the distribution of fitted signal we can extract the sensitivity for dark matter detection with GLAST
Diffuse and Dark Matter Intensity Maps

- Current contributions to the analysis
 - Dark Matter model
 - Navarro, Frenk, and White (NFW) Dark Matter Profile (Navarro et. al. 1997)
 - Neutralino Mass 50 GeV - 425 GeV
 - Continuum gammas (b-bbar final state only)
 - Diffuse Model
 - Choose the diffuse model GALDEF 599278 “conventional” model
Diffuse and Dark Matter Intensity Maps

Conventional Diffuse Model (E > 1 GeV)

10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7}

150 GeV Wimp (E > 1 GeV)

10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7}

Galactic Latitude

Galactic Longitude
Simple Test Case

• 1000 Pseudo Experiments
 – 1 Diffuse Model (conventional model, GALDEF 599278)
 – 150 GeV Neutralino Mass
 • NFW Profile
 • \(\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1} \)

• 16 Masses from 50-425 GeV

• For 1 year of GLAST with \(gtobssim \) we obtain
 – 10,200,000 Diffuse Events
 – 5,869 Events from 150 GeV Dark Matter model
Example Log Likelihood

Plot shows a sample fit of a single pseudoexperiment
Each point corresponds to the fit for that mass to the pseudoexperiment
We then repeat this process for each pseudoexperiment

fitted mass 154 +/- 20 GeV
With 1000 pseudoexperiments we obtain a single point in the sensitivity for GLAST. We will then run pseudoexperiments for various masses and cross-sections to obtain the full sensitivity plot.
Summary

• Searching for Dark Matter in the halo allows for high statistics and avoids some of the problems at the Galactic center

• Using pseudoexperiments we can extract the sensitivity of the GLAST experiment to diffuse dark matter emission

• In the future, we plan to add astrophysical sources and examine the systematic errors varying the diffuse model parameters

• Results from this analysis will be included in a pre-launch paper discussing the physics analyses of the GLAST Dark Matter & New Physics Science Group