Indirect detection of light dark matter

Francesc Ferrer

Case Western Reserve University

Great Lakes Cosmology Workshop 8, June 2007
Outline

1 Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2 Light dark matter in the NMSSM
 - The \(\mu \) problem of the MSSM
 - Neutralinos with a singlet component

3 Indirect detection
 - \(\chi \)s in the Earth and the Sun
 - Antimatter and \(\gamma \)-ray fluxes
Outline

1. Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2. Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3. Indirect detection
 - χ's in the Earth and the Sun
 - Antimatter and γ-ray fluxes
Outline

1. Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2. Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3. Indirect detection
 - χs in the Earth and the Sun
 - Antimatter and γ-ray fluxes
Outline

1. Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2. Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3. Indirect detection
 - χ's in the Earth and the Sun
 - Antimatter and γ-ray fluxes

Francesc Ferrer
The nature of the Dark Matter

ΛCDM cosmology
- We can describe the composition of the Universe
- The nature of the dark sector is still unknown
1/4th is made of Cold Dark Matter

Cold Dark Matter

- Structure formation requires the Dark Matter to be non-relativistic
- A neutral particle with mass and interaction rates at the electroweak scale is a good candidate
Other possibilities

- Modify gravity?
Other possibilities

- Modify gravity?
Outline

1. Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2. Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3. Indirect detection
 - χ's in the Earth and the Sun
 - Antimatter and γ-ray fluxes
The MSSM neutralino

Input from Particle Physics

- **SUSY** is a symmetry between bosons and fermions that, if present not far above the electroweak scale, can explain the hierarchy problem of the Standard Model of PP.
- As a bonus, the LSP is stable in R-Parity conserving models and, if neutral, is an example of WIMP.
- The neutralino LSP can be detected using both direct and indirect detection methods.
Dark Matter
The NMSSM neutralino
Indirect detection
Summary

Outline

1 Introduction
- The nature of the Dark Matter
- The MSSM neutralino

2 Light dark matter in the NMSSM
- The μ problem of the MSSM
- Neutralinos with a singlet component

3 Indirect detection
- χs in the Earth and the Sun
- Antimatter and γ-ray fluxes

Francesc Ferrer
Indirect detection of light dark matter
The μ problem of the MSSM

Fine-tuning in the MSSM

- The MSSM lagrangian has an unprotected dimensionful parameter:
 \[\mathcal{L} \sim \mu^2 H_1 H_2 \]

- The LEP lower bound on h pushes the scale of SUSY breaking above the electroweak scale.

- Electroweak Baryogenesis, $n_b/n_\gamma \sim 10^{-10}$, is not possible in the MSSM.
Singlet extensions of the MSSM

The Next-to-MSSM
- Introduce a singlet superfield with a \mathbb{Z}_3 invariance:

$$\lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

Natural solution
- Effective $\mu_{\text{eff}} = \langle S \rangle$.
- Extra decay channels: $h \rightarrow aa$.
- Stronger electroweak phase transition.
Outline

1. Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2. Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3. Indirect detection
 - χ's in the Earth and the Sun
 - Antimatter and γ-ray fluxes
Neutralinos with a singlet component

NMSSM neutralinos

- They can be as light as ~ 100 MeV.
- In the ~ 100 MeV mass range they could explain the SPI data.
- If in the ~ 10 GeV range, they could account for the discrepancy between DAMA and CDMS.
Neutralinos with a singlet component

Light neutralinos
- Direct detection experiments are optimized for neutralinos heavier than ~ 50 GeV
Dark Matter
The NMSSM neutralino
Indirect detection
Summary

Outline

1. Introduction
 • The nature of the Dark Matter
 • The MSSM neutralino

2. Light dark matter in the NMSSM
 • The μ problem of the MSSM
 • Neutralinos with a singlet component

3. Indirect detection
 • χs in the Earth and the Sun
 • Antimatter and γ-ray fluxes

Francesc Ferrer
Indirect detection of light dark matter
Indirect detection

Focus on the few GeV mass range

- (Some) Direct detection experiments are not sensitive to $m_\chi \lesssim 50$ GeV.
- A weakly interacting particle can annihilate to Standard Model final states:
 \[\chi\chi \rightarrow f\bar{f}, W^+W^-, ZZ, \ldots \]
- Indirect detection rates increase as $1/m_\chi^2$.

Francesc Ferrer

Indirect detection of light dark matter
The NMSSM neutralino

Indirect detection

- **νs from the Earth or the Sun**

 - **Trapped neutralinos**
 - χ can be trapped via elastic scattering and settle in the Earth/Sun core.
 - We can monitor νs from annihilations.

 - Indirect detection of light dark matter
Solar dynamics

- Energy transport by neutralinos could reduce the central Sun temperature.
- The mean free path of the neutralinos in the Sun is much larger than $r_\chi \lesssim 0.13R_\odot \sqrt{1 \text{ GeV}/m_\chi}$, and energy is transported in a non-local manner.
Outline

1 Introduction
 - The nature of the Dark Matter
 - The MSSM neutralino

2 Light dark matter in the NMSSM
 - The μ problem of the MSSM
 - Neutralinos with a singlet component

3 Indirect detection
 - χs in the Earth and the Sun
 - Antimatter and γ-ray fluxes

Francesc Ferrer
Indirect detection of light dark matter
PAMELA is measuring e^+ and \bar{p} fluxes. The forthcoming AMS-02 will improve the precision on the e^+ flux.

The proposed balloon-borne GAPS experiment will search for antideuterons in the background-free interval $0.1 \leq E \leq 0.25$ GeV.
Neutralino annihilations yield a two component flux of gamma rays.

The estimates of the flux depend on the dark matter halo profile and on the evaluation of the background.
<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>MSSM</th>
<th>NMSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hierarchy</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fine tuning</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Baryogenesis</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Indirect detection</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>