Can we detect tensor B modes using galaxy delensing?

Laura Marian
University of Pennsylvania

Great Lakes Cosmology Workshop, June 1, 2007
CMB temperature and polarization spectra
The lensing contamination:

Convolution in Fourier space between E modes and the lensing potential:

\[C_{l}^{WL} = \int \frac{d^2 l'}{(2\pi)^2} \left[(\vec{l} - \vec{l}') \cdot \vec{l}' \right]^2 \sin^2[2(\phi_{l'} - \phi_{l})] C_{|\vec{l}-\vec{l}'|}^{\psi} C_{l'}^{E}.\]
Unlensed E mode

Lensed E mode

Deflection field

Lensing B mode

The lensing potential estimator

\[\hat{\phi}_i(\theta) = \int_0^\chi_\infty W_i(\chi) \Phi^{3D}(\chi \theta, \chi) \]

redshift bin i lensing kernel

\[\hat{\phi}_{\text{CMB}}(l) = \sum_i \alpha_i(l) \hat{\phi}_i(l) \]

projected potential of source bin i

\[R(l) \equiv \hat{\phi}_{\text{CMB}}(l) - \phi_{\text{CMB}}(l) \]
The variance of the residual:

for LST:
$n = 30 \text{ gal/sqarcmin}$

for SNAP & BOX:
$n = 100 \text{ gal/sqarcmin}$
Can we delens the CMB using this estimator?
r_{min} as a function of CMB instrumental noise

Graph Description:

- The graph illustrates r_{min} as a function of $w^{-1/2}$ (μK arcmin).
- The x-axis represents $w^{-1/2}$ (μK arcmin), while the y-axis shows r_{min} on a logarithmic scale.
- Different lines represent different setups:
 - No delensing
 - LST
 - SNAP
 - SNAP with $z_{\text{max}} = 5$
 - SNAP with $z_{\text{max}} = 10$
 - SNAP with $z_{\text{max}} = 20$

- The Planck results are denoted by a diamond symbol.
- The CMBpol results are denoted by a star symbol.

Notes:

- The graph compares the performance of different setups in terms of r_{min}.
- The x-axis values range from 1 to 100, with corresponding $w^{-1/2}$ values.
- The y-axis values range from 10^{-6} to 10^{-1}.

Keywords: CMB, instrumental noise, r_{min}, Planck, CMBpol.
Dependence of r_{min} on WL survey parameters

CMBpol noise level

7×10^{-5}

8×10^{-6}

n (galaxies/arcmin2)

Log(1+z)
Conclusions

- low foreground residuals + low instrumental noise delensing with galaxies surveys can be useful.

- for accurate delensing, one needs a survey that goes at least up to z_{max} of 20; but the source concentration, n, need not high.

- galaxy delensing does NOT require high resolution in the CMB maps.

- galaxy delensing does not suffer from foreground problems.